Top 10 Data Mining Mistakes

Cover Image

It has been said that good judgment comes through experience, but experience seems to come through bad judgment! In two decades of mining data from diverse fields, we have made many mistakes, which may yet lead to wisdom. In the following paper, we briefly describe, and illustrate from examples, what we believe are the “Top 10” mistakes of data mining, in terms of frequency and seriousness. Most are basic, though a few are subtle. All have, when undetected, left analysts worse off than if they’d never looked at their data.

After compiling the list, we realized that an even more basic problem-mining without (proper) data must be addressed as well. So, numbering like a computer scientist (with an overflow problem), here are mistakes 0 to 10.

Feb 8, 2021
Apr 7, 2010
White Paper
Already a Bitpipe member? Log in here

Download this White Paper!